Differential Resistance Mechanisms to Glyphosate Result in Fitness Cost for Lolium perenne and L. multiflorum
نویسندگان
چکیده
Multiple mechanisms of resistance to glyphosate are exhibited by populations of Lolium spp. worldwide. Association of resistance with growth and reproductive fitness is an important predictor for long-term success of glyphosate-resistant (R) versus glyphosate-susceptible (S) biotypes. Numerous studies were conducted on R- and S-biotypes of Italian ryegrass (Lolium multiflorum) and perennial ryegrass (L. perenne) to characterize the underlying mechanism(s) of glyphosate resistance and associate this with growth and reproductive fitness. L. perenne expressed both altered uptake and translocation as well as a genetic change at 106-Pro to -Ser, This pattern for two resistance mechanisms is unique. L. multiflorum also exhibited altered uptake and translocation as well as duplication of EPSPS gene copies. Reduced plant biomass and height for R-versus S-biotypes of both species was evident over two growing seasons. This resulted in S- versus R- L. multiflorum producing up to 47 and 38% more seeds in 2014 and 2015, respectively. S- L. perenne produced up to 20 and 30% more seeds in 2014 and 2015, respectively. Both non-target site and target-site mechanisms of glyphosate resistance can render Lolium spp. at a competitive disadvantage. This has long-term implications for the success of glyphosate-resistant plants in the absence of selection pressure.
منابع مشابه
Nucleotide Diversity at Site 106 of EPSPS in Lolium perenne L. ssp. multiflorum from California Indicates Multiple Evolutionary Origins of Herbicide Resistance
The repeated evolution of herbicide resistance in weeds is an ongoing problem in agricultural regions across the world, and presents a unique system in which to study the origins and spread of adaptive traits across heterogeneous landscapes. Lolium perenne ssp. multiflorum (Lam.) (Italian ryegrass) is a widespread grass weed of agricultural crops that has repeatedly evolved resistance to herbic...
متن کاملGenetic diversity and structure of Lolium perenne ssp. multiflorum in California vineyards and orchards indicate potential for spread of herbicide resistance via gene flow
Management of agroecosystems with herbicides imposes strong selection pressures on weedy plants leading to the evolution of resistance against those herbicides. Resistance to glyphosate in populations of Lolium perenne L. ssp. multiflorum is increasingly common in California, USA, causing economic losses and the loss of effective management tools. To gain insights into the recent evolution of g...
متن کاملVacuolar Sequestration of Paraquat Is Involved in the Resistance Mechanism in Lolium perenne L. spp. multiflorum
Lolium perenne L. spp. multiflorum (Lam.) Husnot (LOLMU) is a winter annual weed, common to row crops, orchards and roadsides. Glyphosate-resistant populations of LOLMU are widespread in California. In many situations, growers have switched to paraquat or other postemergence herbicides to manage glyphosate-resistant LOLMU populations. Recently, poor control of LOLMU with paraquat was reported i...
متن کاملSeasonal Abundance and Phenology of Oebalus pugnax (Hemiptera: Pentatomidae) on Graminaceous Hosts in the Delta Region of Mississippi
The rice stink bug, Oebalus pugnax (F.), is a graminaceous feeder, and the most injurious insect pest of heading rice, Oryza sativa L., in the United States. Rice growers are aware of the economic importance of host grasses in O. pugnax abundance. However, the need for increased knowledge of host sequence relative to O. pugnax abundance is vital. Densities of O. pugnax on 15 graminaceous hosts ...
متن کاملIdentification of quantitative trait loci for seed traits and floral morphology in a field-grown Lolium perenne · Lolium multiflorum mapping population
Lolium perenne L. (perennial ryegrass), and Lolium multiflorum Lam. (annual or Italian ryegrass), differ in several traits related to seed yield. Generally, L. multiflorum spikes are larger than L. perenne spikes, and have more spikelets, more florets per spikelet, larger seeds and awns. The greater number of spikelets and florets and larger seeds are associated with higher seed yield in L. mul...
متن کامل